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Abstract 

In this work, a hybrid model order reduction (MOR) 
approach is proposed for nonlinear multi-parameter 
magnetostatic problems applied to motor diagnostics, 
considering various operating conditions and fault 
scenarios. The proposed approach leverages tensor 
decomposition to construct both the reduced basis and 
the nonlinear term, demonstrating superior performance 
compared to classical methods. 

1 Introduction 

Reliable motor operation is critical, driving an increased 
emphasis on online monitoring and fault diagnosis within 
the digital twin framework. The development of a digital 
twin diagnostic model for electric motors requires 
comprehensive data spanning diverse operating 
conditions and fault scenarios, such as eccentricity, 
demagnetization, short circuits, and open circuits [1]. 
This demand underscores the need for numerical 
simulation of multi-parameter problems to generate 
accurate and cost-effective data.  

However, repeated high-fidelity numerical simulations, 
such as those using finite element methods, involving 
multiple parameters and nonlinear iterations, are 
computationally expensive. To mitigate this 
computational burden, projection-based model order 
reduction (MOR) techniques, such as Proper Orthogonal 
Decomposition (POD), have been widely adopted. 
Nevertheless, POD-based MOR is often ineffective for 
nonlinear multi-parameter problems because the 
reduced-order space generated by POD can become 
excessively large due to its limited ability to capture the 
parameter-specific characteristics of the system [2].  

To address the challenges arising in multi-parameter 
cases, a hybrid approach based on tensor decomposition 
(TD) techniques is proposed to construct a both problem-
dependent and parameter-specific MOR basis, as 
reported in our recent work [3]. In this approach, 
nonlinear terms, such as magnetic reluctivity, are 
approximated at the mesh element level using snapshot 
interpolation, effectively reducing the nonlinear problem 
to a linear one. However, the interpolation process for 
these nonlinear terms can become computationally 

expensive and memory-intensive during the online stage 
as the parameter dimensionality increases, limiting the 
applicability of this method to higher-dimensional 
parameter problems. 

In this work, by leveraging the tensor structure, the 
interpolation process is improved and strengthened, 
requiring less memory and reducing online computational 
time. This renders our proposed approach an efficient 
hybrid MOR method. Constructing both the MOR bases 
and the nonlinear terms independently yet 
simultaneously provides the potential to handle multi-
parameter problems in high dimension effectively. 

2 Methodology 

Considering the diverse operating conditions and fault 
scenarios of the motor, the corresponding nonlinear 
magnetostatic problem with multiple parameters, 
represented by a 𝐷-dimensional parameter vector 𝐩 =
(𝑝ଵ, 𝑝ଶ, … , 𝑝஽), is expressed as: 

𝐜𝐮𝐫𝐥(𝛎(𝐁)𝐜𝐮𝐫𝐥𝐀) = 𝐉ୱ + 𝐜𝐮𝐫𝐥𝐌, (1) 
where 𝛎  represents the magnetic reluctivity, 𝐁  the 
magnetic flux density, 𝐀 the magnetic vector potential 
such that 𝐁 = 𝐜𝐮𝐫𝐥𝐀, 𝐉ୱ the imposed current density, 𝐌 
the magnetization vector of permanent magnet. This can 
be simplified to the following system: 

𝕂(𝒖, 𝐩)𝒖(𝐩) = 𝐅(𝐩), (2) 
where 𝕂(𝒖, 𝐩)  represents the 𝐩  dependent system 
matrix, 𝒖(𝐩)  represents the discretized form of the 
unknowns in the system, and 𝐅(𝐩) is the right-hand side 
vector resulting from the discretization of the source term. 

This nonlinear system can be solved using nonlinear 
schemes such as Newton-Raphson or the Fixed-Point 
method. For parametric problems, when solving 
repeatedly with different values of 𝐩, to avoid the costly 
nonlinear iteration process, the interpolation technique 
for 𝛎 can be used in practice. The equivalent problem is 
expressed as: 

𝕂(𝛎(𝐩), 𝐩)𝒖(𝐩) = 𝐅(𝐩). (3) 
The advantage of this approach is that only a linear 
problem needs to be solved. However, it requires 𝛎(𝐩), 
which is typically obtained through table interpolation. In 
practice, the computational cost and storage for the 𝛎 
term can be expensive, particularly when the dimension 
of the parameter space becomes large. 

For the MOR, applying the POD method, with a reduced 
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basis 𝕌 satisfying 𝕌୘𝕌 = 𝕀, the classical reduced model 
reads: 

𝕌୘𝕂(𝛎(𝐩), 𝐩)𝕌𝕌୘𝒖(𝐩) = 𝕌୘𝐅(𝐩).  (4) 

In our previous work, TD-based MOR is proposed to 
construct the reduced basis 𝕌TD(𝐩) with the term 𝛎(𝐩) 
obtained by classical interpolation. Here, we aim to use 
the tensor structure to alleviate the computational burden 
corresponding to the construction of 𝛎(𝐩). 

With our proposed TD based approach, we need to 
construct two terms, namely 𝕌TD(𝐩) for 𝕌 and 𝛎TD(𝐩) 
for 𝛎(𝐩) arsing in (4). 

2.1 Construction of 𝕌TD by TDMOR 

Similar to the classical POD method, we need to collect 
the snapshots, by sweeping the parameter 𝐩 , to get 
𝒖൫𝑝ଵ

௝భ , … , 𝑝஽
௝ವ൯  , with (𝑝௜

௝
)௝ୀଵ,...,௡೔

  and 1 ≤ 𝑖 ≤ 𝐷. With the 
tensor structure, a 𝐷 + 1 dimension tensor 𝚽𝒖, of size  
𝑚 × 𝑛ଵ × 𝑛ଶ × … × 𝑛஽, is constructed as:  

𝚽𝒖(: , 𝑗ଵ, … , 𝑗஽) = 𝒖൫𝑝ଵ
௝భ , … , 𝑝஽

௝ವ൯.  (5) 
With the Tensor decomposition, a low rank 
approximation 𝚽෩ 𝒖 of the full tensor 𝚽𝒖 can be obtained: 

𝚽෩ 𝒖 = ෍ ෍ …

௡෤భ

௤భୀଵ

௠෥

௝ୀଵ

෍ (𝐂𝒖)௝,௤భ,…,௤ವ
𝒘𝒖

௝

௡෤ವ

௤ವୀଵ

∘ 𝝈𝒖;ଵ
௤భ ∘ ⋯ ∘ 𝝈𝒖;஽ିଵ

௤ವషభ ∘ 𝝈𝒖;஽
௤ವ  , (6) 

where 𝑚,෦ 𝑛෤ଵ, . . . 𝑛෤஽ are the compressed dimension much 
smaller than 𝑚, 𝑛ଵ, … , 𝑛஽, implying that the core tensor 
𝐂𝒖 has a small size.  

TDMOR constructs parameter-specific reduced bases 
𝕌TD(𝐩) in two stages. Specifically, at the offline stage, a 
global orthogonal basis 𝕌𝒖;g  and a series of matrices 
𝕊𝒖;𝑘 with 1 ≤ 𝑘 ≤ 𝐷 − 1, that encodes information on the 
relationship between various parameters, can be 
obtained according to (6). 

𝕌𝒖;g = ൣ𝒘𝒖
𝟏 , … , 𝒘𝒖

௠෥ ൧ ∈ 𝑅௠×௠෥ , (7) 

𝕊𝒖;௞ = ቂ𝝈𝒖;௞
ଵ , … , 𝝈𝒖;௞

௡෤ೖ ቃ
்

∈ 𝑅௡෤ೖ×௡ೖ ,    (8) 

At the online stage, a parameter specific core matrix 
ℂ𝒖(𝐩) can be obtained with the core tensor 𝐂𝒖, matrices 
𝕊𝒖;𝑘 and the following extraction-interpolation procedure. 

ℂ𝒖(𝐩) = 𝐂𝒖 ×ଶ ቀ𝕊𝒖;ଵ𝒆ଵ(𝐩)ቁ … ×஽ ቀ𝕊𝒖;஽ିଵ𝒆஽ିଵ(𝐩)ቁ , (9) 

where 𝒆௞ is the coordinate vector at the 𝑘-th dimension 
of the parameter 𝐩 obtained by Lagrangian interpolation. 
The singular value decomposition (SVD) is only needed 
to apply to the small size core matrix ℂ𝒖(𝐩):  

ℂ𝒖(𝐩) = 𝕌𝒖;c(𝐩)Σ𝒖;c(𝐩)𝕍𝒖;c
୘ (𝐩).  (10) 

Finally, a reduce basis 𝕌TD(𝐩)  with both problem-
dependent and parameter-specific can be obtained:  

𝕌TD(𝐩) = 𝕌𝒖;g𝕌𝒖;c(𝐩).  (11) 

2.2 Construction of 𝛎TD by TD 

Similar to (5), a tensor for the snapshot of 𝛎(𝐩) is  

constructed as: 

𝚽𝛎(: , 𝑗ଵ, … , 𝑗஽) = 𝛎൫𝑝ଵ
௝భ , … , 𝑝஽

௝ವ൯.  (12) 
Similar, Tensor decomposition, as described in (6), can 
be applied to 𝚽𝛎  at offline to get a global orthogonal 
basis 𝕌𝛎;g and a series of matrices 𝕊𝛎;௜, such that: 

𝕌𝛎;g = ൣ𝒘𝛎
𝟏, … , 𝒘𝛎

௠෥ ൧ ∈ 𝑅௠×௠෥ , (13) 

𝕊𝛎;௜ = ቂ𝝈𝛎;௜
ଵ , … , 𝝈𝛎;௜

௡෤೔ ቃ
୘

∈ 𝑅௡෤೔×௡೔ ,  𝑖 = 1, … , 𝐷.  (14) 

Then at the online stage, the core matrix ℂ𝛎(𝐩) for 𝛎(𝐩) 
can be obtained with extraction-interpolation procedure:  

ℂ𝛎(𝐩) = 𝐂𝛎 ×ଶ ቀ𝕊𝛎;ଵ𝒆ଵ(𝒑)ቁ … ×஽ ቀ𝕊𝛎;஽ିଵ𝒆஽ିଵ(𝐩)ቁ ×஽ାଵ ቀ𝕊𝛎;஽𝒆஽(𝐩)ቁ.  (15) 

Subsequently, 𝛎TD(𝐩) can be constructed with: 

𝛎TD(𝐩) = 𝕌𝛎;gℂ𝛎(𝐩).  (16) 

3 Preliminary Numerical Results  

A preliminary result of the proposed approach is 
illustrated in Fig. 1, invoking an example of electric motor 
with eccentricity and a total of 4 parameters, which shows 
a good performance. More detail discussion will be 
provided in full paper.  

 
Fig. 1. Preliminary result of the propose approach.  
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